Jenseits von Features: Warum Cybersecurity für das moderne Cockpit unerlässlich ist
Illustration of a digital car cockpit with a central shield icon, representing advanced cybersecurity measures protecting vehicle systems and data.
Digital cockpit featuring advanced cybersecurity measures for enhanced vehicle safety and data protection.

In Kürze

  • Das digitale Cockpit mit seiner Konnektivität und seinen fortschrittlichen Funktionen birgt einzigartige Cybersicherheitsrisiken, die proaktiv angegangen werden müssen.
  • Die möglichen Folgen eines Cyberangriffs reichen von der Verletzung der Privatsphäre bis hin zur direkten Bedrohung der Sicherheit und Kontrolle von Fahrzeugen.
  • Acsia legt großen Wert auf robuste Cybersicherheitslösungen und stellt sicher, dass Ihr Cockpit mit dem Kernstück des Schutzes gebaut wird, um das Vertrauen in die Technologie zu fördern.

Hauptinhalt

Die Umgestaltung des Cockpits ist verblüffend. Vorbei sind die Zeiten der einfachen Knöpfe und Regler. Die heutigen Cockpits bieten elegante Touchscreens, intuitive Sprachsteuerung, Echtzeit-Navigation und eine nahtlose Verbindung zu unseren Smartphones. Diese Weiterentwicklung der Funktionen geht jedoch mit einer parallelen Herausforderung einher, die ebenso viel Aufmerksamkeit erfordert: die Cybersicherheit. Während wir von den Möglichkeiten unserer digitalen Cockpits fasziniert sind, müssen wir sicherstellen, dass sie den Bedrohungen einer vernetzten Welt standhalten.

Die Risiken verstehen

Stellen Sie sich Ihr digitales Cockpit als eine Miniaturversion des Internets vor, die in Ihrem Auto sitzt. Wie in jeder vernetzten Umgebung gibt es auch hier Schwachstellen. Lassen Sie uns die wachsende Landschaft der Cybersecurity-Risiken im Automobilbereich aufschlüsseln:

  • Das Web auf Rädern: Wi-Fi-Hotspots, Mobilfunkverbindungen, Bluetooth und sogar Technologien wie V2X (Fahrzeug-zu-Fahrzeug- oder Fahrzeug-zu-Infrastruktur-Kommunikation) sind unglaublich nützlich, schaffen aber auch mehr Möglichkeiten für potenzielle Angreifer.
  • Daten: Das neue Gold: Ihr Cockpit ist eine Fundgrube für Daten – Ihr Standort, Ihr Fahrverhalten, möglicherweise Kontaktlisten oder sogar mit Apps verknüpfte Zahlungsinformationen. Das macht es zu einem bevorzugten Ziel für Hacker, die versuchen, wertvolle Informationen zu stehlen und auszunutzen.
  • Die Software als Schwachstelle: Der Code hinter den Funktionen des Cockpits ist komplex. Schwachstellen, ob versehentlich oder absichtlich eingeführt, können Angreifern einen Weg ins Innere eröffnen.
  • Vom Ärgernis zur Katastrophe: Autohersteller müssen über Datendiebstahl hinaus denken. Im schlimmsten Fall könnte ein Cyberangriff sicherheitskritische Systeme gefährden und Angreifern die Möglichkeit geben, das Fahrzeug selbst aus der Ferne zu manipulieren.

Cybersecurity: Eine vielschichtige Verteidigung

Beim Schutz des digitalen Cockpits geht es nicht um eine einzige Patentlösung. Echte Cybersicherheit erfordert einen ganzheitlichen Ansatz:

  • Sichere Grundlagen: Sorgfältige Kodierungspraktiken, die Einhaltung von Standards wie ISO/SAE 21434 und die Verwendung von sicheren Softwarebibliotheken bilden eine solide Grundlage.
  • Mauern und Gräben: Die Verschlüsselung von Daten im Ruhezustand und bei der Übertragung, Firewalls und strenge Authentifizierungsprotokolle erschweren es Angreifern, sich Zugang zu sensiblen Informationen zu verschaffen und diese zu exfiltrieren.
  • Intrusion Detection: Systeme, die Anomalien und ungewöhnlichen Netzwerkverkehr erkennen können, können als Frühwarnsystem fungieren und eine schnelle Eindämmung von Angriffen ermöglichen.
  • Der Schlüssel zur Agilität: Over-the-Air (OTA)-Update-Funktionen sind von entscheidender Bedeutung. Es werden immer wieder Sicherheitslücken auftreten. Es ist wichtig, dass Sie diese schnell für Ihre gesamte Fahrzeugflotte beheben können.
  • Proaktive Verteidigung: Penetrationstests (Ethical Hacking) und Bedrohungsmodellierung helfen Ihnen, einen Schritt voraus zu sein und potenzielle Schwachstellen zu erkennen, bevor sie von böswilligen Akteuren ausgenutzt werden.

Sicherheit durch Design: Vertrauen im Cockpit schaffen

Genauso wie die strukturelle Sicherheit von Anfang an in ein Auto eingebaut wird, muss die Cybersicherheit ein integraler Bestandteil des gesamten Entwicklungszyklus des digitalen Cockpits sein. Dies beinhaltet:

  • Änderung der Denkweise: Sicherheit darf nicht ein nachträglicher Gedanke sein. Jeder Ingenieur, jede Codezeile, muss einen sicherheitsbewussten Ansatz widerspiegeln.
  • Nutzung von Standards: Etablierte Best Practices der Branche bieten einen umfassenden Fahrplan und erleichtern die Zusammenarbeit mit Lieferanten, die sich ebenfalls an diese Standards halten.
  • Wachsamkeit ist die Norm: Cyber-Bedrohungen entwickeln sich weiter. Sicherheit erfordert ständige Überwachung, die Fähigkeit, neue Schwachstellen schnell zu beheben und eine Kultur des Sicherheitsbewusstseins zu fördern.

Acsia: Ihr Partner für Cybersicherheit

Acsia weiß, dass ein sicheres digitales Cockpit sowohl für Autohersteller als auch für Autofahrer von entscheidender Bedeutung ist. Unser Fachwissen umfasst folgende Bereiche:

  • Analyse der Bedrohungen: Wir helfen Ihnen bei der Identifizierung und Priorisierung von Cyber-Risiken, die für Ihr spezifisches Cockpit-Design relevant sind.
  • Sichere Entwicklung: Wir integrieren Sicherheitsprinzipien in den gesamten Lebenszyklus der Softwareentwicklung und minimieren Schwachstellen.
  • Testen und Validieren: Unsere strengen Tests helfen dabei, potenzielle Sicherheitsschwachstellen aufzudecken, bevor Ihr Cockpit auf die Straße kommt.

Da das digitale Cockpit zur zentralen Schnittstelle zwischen dem Fahrer und seinem Fahrzeug wird, ist seine Sicherheit nicht mehr wegzudenken. Es geht nicht nur um den Schutz von Daten – es geht darum, Leben zu schützen, Vertrauen zu gewährleisten und Innovation ohne Kompromisse zu ermöglichen. Bei Acsia betrachten wir Cybersicherheit nicht als Zusatz, sondern integrieren sie in die DNA der Cockpitentwicklung.

Linked in
Share
Don’t miss an update!
Popular Posts
Building a Robust Cockpit: The Importance of Software Integration and Testing
READ MORE ABOUT
Close-up view of a digital cockpit interface with integrated software modules and diagnostic tools.
Digital cockpit display highlighting the importance of software integration and testing for a seamless in-vehicle experience.
Aufbau eines robusten Cockpits: Die Bedeutung von Software-Integration und -Tests
READ MORE ABOUT
Close-up view of a digital cockpit interface with integrated software modules and diagnostic tools.
Digital cockpit display highlighting the importance of software integration and testing for a seamless in-vehicle experience.
Beyond Features: Why Cybersecurity is Essential for the Modern Cockpit
READ MORE ABOUT
Illustration of a digital car cockpit with a central shield icon, representing advanced cybersecurity measures protecting vehicle systems and data.
Digital cockpit featuring advanced cybersecurity measures for enhanced vehicle safety and data protection.
Your EV is a Smart Companion Unveiling the Power of Connected Car Technology in E-Mobility
READ MORE ABOUT
Electric vehicle driving through a smart city with holographic interface displays highlighting connected car technology and real-time data communication.
Connected electric vehicle navigating a smart city, showcasing advanced telematics and connectivity features."
Ihr E-Fahrzeug ist ein intelligenter Begleiter – Enthüllung der Leistungsfähigkeit von Connected Car Technology in der E-Mobilität
READ MORE ABOUT
Electric vehicle driving through a smart city with holographic interface displays highlighting connected car technology and real-time data communication.
Connected electric vehicle navigating a smart city, showcasing advanced telematics and connectivity features."
Request a Meeting
AH2025/PS06 | AI/ML

Context

Continuous employee learning is essential for companies to stay competitive in a fast-changing business environment. Organizations adopt Learning Management Systems (LMS) to upskill employees, meet compliance requirements, and support career growth. However, existing LMS platforms often act as content repositories rather than personalized learning assistants.

 

Pain Point

  • Employees are overwhelmed by generic training content and struggle to find relevant courses.
  • Managers lack visibility into skill gaps and training effectiveness.
  • Companies spend heavily on training programs without clear insights into ROI or business impact.
  • Current LMS solutions provide limited personalization and recommendations, leading to low engagement.

 

Challenge

Develop an AI-powered LMS that goes beyond course hosting, by:

  • Mapping employee skills, roles, and career paths to relevant training modules.
  • Using learning analytics to predict skill gaps and recommend personalized learning journeys.
  • Providing managers with team-level insights on training progress and skill readiness.
  • Enabling employees to learn flexibly, with adaptive learning paths based on performance.

 

Goal

Create a smart, data-driven LMS that improves employee engagement, learning outcomes, and workforce readiness while giving leadership clear visibility into training impact.

 

Outputs

  • Personalized learning recommendations for each employee.
  • Skill gap dashboards for managers and HR.
  • Learning progress analytics with completion, performance, and adoption rates.
  • Training ROI insights linked to productivity and career growth.

 

Impact

  • Employees gain relevant, career-aligned skills faster.
  • Managers can strategically deploy talent based on verified skills.
  • Organizations see higher training ROI and improved workforce agility.
  • Creates a culture of continuous learning, driving retention and innovation.
AH2025/PS05 | AI/ML

Context

Continuous employee learning is essential for companies to stay competitive in a fast-changing business environment. Organizations adopt Learning Management Systems (LMS) to upskill employees, meet compliance requirements, and support career growth. However, existing LMS platforms often act as content repositories rather than personalized learning assistants.

Pain Point

  • Employees are overwhelmed by generic training content and struggle to find relevant courses.
  • Managers lack visibility into skill gaps and training effectiveness.
  • Companies spend heavily on training programs without clear insights into ROI or business impact.
  • Current LMS solutions provide limited personalization and recommendations, leading to low engagement.

Challenge

Develop an AI-powered LMS that goes beyond course hosting, by:

  • Mapping employee skills, roles, and career paths to relevant training modules.
  • Using learning analytics to predict skill gaps and recommend personalized learning journeys.
  • Providing managers with team-level insights on training progress and skill readiness.
  • Enabling employees to learn flexibly, with adaptive learning paths based on performance.

Goal

Create a smart, data-driven LMS that improves employee engagement, learning outcomes, and workforce readiness while giving leadership clear visibility into training impact.

Outputs

  • Personalized learning recommendations for each employee.
  • Skill gap dashboards for managers and HR.
  • Learning progress analytics with completion, performance, and adoption rates.
  • Training ROI insights linked to productivity and career growth.

Impact

  • Employees gain relevant, career-aligned skills faster.
  • Managers can strategically deploy talent based on verified skills.
  • Organizations see higher training ROI and improved workforce agility.
  • Creates a culture of continuous learning, driving retention and innovation.
AH2025/PS04 | AI/ML

Context

Software teams struggle to diagnose system failures from massive log files. Manual analysis is slow, error-prone, and requires expert knowledge. Root cause extraction from unstructured, noisy logs. Use creative algorithms, LLM prompting strategies, or hybrid heuristics.

Pain Point

  • Manual log analysis is slow, error-prone, and requires deep expertise in both the system and its environment.
  • Critical issues can be missed or misdiagnosed, leading to longer downtimes and higher costs.
  • Existing monitoring tools often raise alerts without actionable insights, leaving developers to do the heavy lifting.

Challenge

Build an AI-powered log analytics assistant that can:

  • Ingest and parse unstructured application logs at scale.
  • Automatically flag potential defects or anomalies.
  • Summarize possible root causes in natural language.
  • Provide actionable insights that developers can use immediately.

Goal

Deliver a working prototype that:

  • Operates on sample log data.
  • Produces insights that are accurate, usable, and easy to interpret.
  • Bridges the gap between raw log data and developer-friendly diagnostics.

Outputs

  • Automated defect detection (flagging anomalies in logs).
  • Root cause summaries in natural language.
  • Actionable recommendations (e.g., suspected component failure, probable misconfiguration).
  • Visualization/dashboard (if possible) for quick triage.

Impact

  • Reduced time to diagnose failures, lowering downtime and maintenance costs.
  • Increased developer productivity, freeing engineers to focus on fixes rather than sifting logs.
  • Improved reliability of complex software systems.
  • Scalable approach that can be extended across industries (finance, automotive, telecom, healthcare).
AH2025/PS03 | AI/ML

Context

Drivers and passengers spend significant time in vehicles where comfort, safety, and accessibility directly affect satisfaction and well-being. Yet today’s in-car systems remain largely static and manual, requiring users to adjust climate, seats, infotainment, and navigation themselves. With increasing connectivity, AI offers the potential to transform cars into adaptive, intelligent companions.

Pain Point

  • Current in-car experiences are one-size-fits-all, failing to account for individual preferences or needs.
  • Manual adjustments while driving can be distracting and unsafe.
  • Accessibility gaps (e.g., for elderly passengers or those with hearing/visual impairments) remain unaddressed.

Challenge

Build a Generative AI-powered cockpit agent that dynamically personalizes the in-car experience based on contextual data such as:

  • Driver profile (age, preferences, past behaviour).
  • Calendar & journey type (work commute, leisure trip, urgent travel).
  • Mood (estimated from inputs like speech, facial cues, or self-reporting).
  • Accessibility needs (visual/hearing impairments, elderly passengers).

Goal

Deliver real-time, adaptive personalization of:

  • Comfort settings: AC, seat adjustments, lighting.
  • Infotainment: music, podcasts, news.
  • Navigation guidance: route optimization based on urgency, preferences, and accessibility.

Outputs

  • Dynamic in-car assistant that responds to context in real-time.
  • Personalized environment settings for comfort and safety.
  • Adaptive infotainment & navigation suggestions tailored to mood, journey type, and accessibility.

Impact

  • Safer driving experience with fewer distractions.
  • Higher passenger satisfaction through comfort and entertainment personalization.
  • Improved accessibility and inclusivity for diverse user needs.
  • New value proposition for automakers: cars as intelligent, personalized environments, not just vehicles.
AH2025/PS02 | AI/ML

Context

Automotive software development is highly complex, involving multiple tools (Jira, GitHub, MS Teams, Confluence), distributed teams, and strict compliance standards (ISO 26262, ASPICE). Project managers must continuously monitor tasks, track resources, and identify risks. However, the sheer volume of data across tools makes real-time visibility and decision-making difficult.

Pain Point

  • Project managers waste time manually consolidating data from Jira, GitHub, and communication platforms.
  • Resource allocation bottlenecks (overloaded developers, idle testers) often go unnoticed.
  • Risks (delays, defects, dependency issues) are only discovered late, impacting delivery timelines.
  • Lack of predictive insights leads to reactive, rather than proactive, project management.

Challenge

Build an AI-powered project management assistant that can:

  • Auto-generate project dashboards by integrating Jira, GitHub, and MS Teams data.
  • Provide real-time resource allocation insights (who is overloaded, who is free).
  • Predict risks and delays using historical patterns and live progress signals.
  • Deliver natural language summaries for managers and stakeholders.

Goal

Enable project managers to see the full picture instantly, automate reporting, and take data-driven decisions on resources and risks without manual effort.

Outputs

  • Automated project dashboards (progress, backlog, velocity, open PRs/issues).
  • Resource allocation map showing workload distribution across the team.
  • Risk prediction engine (e.g., “Module X likely delayed by 2 weeks due to dependency on Y”).
  • AI-generated summaries (daily/weekly status reports in plain language).

Impact

  • Reduced management overhead → fewer hours wasted on reporting.
  • Improved predictability → early identification of risks and delays.
  • Optimal resource utilization → balanced workloads across teams.
  • Better stakeholder communication → clear, automated updates.
  • Scalable for enterprises → can be deployed across multiple automotive software teams.
AH2025/PS01 | AI/ML

Context

In modern organizations, assembling the right project team is critical to success. Managers must balance skills, experience, cost, availability, and domain expertise, but decisions are often made using intuition or partial information. This leads to suboptimal teams, missed deadlines, or budget overruns.

Pain Point

  • Team formation today is time-consuming and heavily manual, requiring managers to cross-check spreadsheets, HR databases, and project needs.
  • Costs and expertise trade-offs are rarely quantified, making it hard to justify team composition to leadership or clients.
  • Traditional staffing tools focus on availability but fail to optimize across multi-dimensional constraints (skills, budget, past project fit, timeline).

Challenge

Build a Generative AI assistant that takes as input:

  • Employee database (skills, past projects, availability, cost)
  • Customer project requirements (tech stack, timeline, budget, domain)

Goal

Enable managers to form the best-fit, economically feasible project teams in minutes, rather than days, while providing transparency into why each recommendation was made.

Outputs

  • Optimal team composition: Recommended employees, with justification.
  • Economic feasibility analysis: Skill coverage vs cost vs timeline.
  • Alternative team recommendations: Trade-off scenarios (e.g., lower cost, faster delivery, more experienced).

Impact

  • Faster project staffing → quicker project kick-offs.
  • Higher client satisfaction due to right skills on the right project.
  • Lower staffing costs through data-driven optimization.
  • A scalable framework that can be extended for hackathons, consulting firms, or large enterprise project staffing.